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ABSTRACT  

This lecture series deals with a family of sound source localization techniques based on the solution of 
minimization problems and make an extensive use of the matrix generalized inverse operator. It is separated 
from more usual techniques such as beamforming and deconvolution algorithms in the sense that all sources 
are considered at once (and not separately as in beamforming) and possibly coherent. Basic mathematical 
principles are presented together with advantages and drawbacks of the technique. Some derivative methods 
taken from the literature are presented together with application examples in the field of aeroacoustics. 

1.0 INTRODUCTION 

Microphones array techniques provides a considerable amount of data from which it is possible to extract 
valuable information on the origin of sound as the location or the power of acoustic sources. The most 
well spread array method is certainly the beamforming algorithm (also known as “delay-and-sum”) 
because of its simplicity, robustness and computation efficiency. However it suffers from a lack of 
resolution in the low frequency range, from the inability to properly quantify the source power, and from 
the intrinsic hypothesis of uncorrelated and omnidirectional sources which is rarely fulfilled in practical 
cases. The two first drawbacks have been tackled in the 2000’s with advanced beamforming-based 
algorithms such as deconvolution techniques. However the uncorrelated source hypothesis remains 
needed. The beamforming algorithm is indeed essentially a point-to-point method: the estimate of the 
source strength at each focusing point is sought as if it was the only source in presence. In this context, it 
is tricky to introduce source correlation in any method which is based on the beamforming principle.  

Another family of array methods is considering all the sources at once and is based on matrix inversion; it 
is the main topic of this lecture series. These methods allow for dealing with correlated, extended or 
directional sources in a proper formulation, and also offer the possibility to estimate the physical 
confidence to be accorded to the solution, which is of prime interest for researchers or engineers in 
experimental techniques.  

Inverse techniques are used in the field of vibratory study, a field where the physical phenomena are 
essentially perfectly coherent, like modal analysis, since a long time [1]. Later, acoustic source analysis 
(fully and partially coherent sources) based on matrix inversion has first been extensively studied by 
Nelson and Yoon [2, 3] for general purpose. Nonetheless they can be naturally extended to cases where 
sources are only partially correlated as in aeroacoustics.  

This lectures series is intended to give an introduction course to inverse array methods to researchers or 
engineers having a background in acoustics but not necessarily in the wide field of inverse techniques 
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applied to sound source localization and quantification. References in this document are thought to be 
good entry points for who is willing to dig further a particular aspect.  As the number of different array 
methods is important, it is sometimes difficult to get an overview of their advantages and drawbacks. A 
didactical comparison of these approaches is presented in reference [4]. It has been chosen here to present 
a common basis to all these methods in section 2.0 and then to detail some of the most known inverse 
techniques in section 3.0.  

2.0 INVERSE PROBLEM 

In this section, the general formulation of the mathematical problem is presented, as well as the standard 
tools to solve it.  

2.1 General underlying formulation 
2.1.1 Parameters: measurement data 

The first step is to consider a set of measured data at frequency ݂ represented by a column-vector  ࢖ ∈ ԧ࢓ of 
dimension	ሾ݉, 1ሿ, where ݉ is the number of sensors.	࢖ can take many forms, it can be for instance the 
complex pressure values of a FFT snapshot at frequency ݂ for the microphones in an array, or it can be a 
more statistically converged input as the principal component of the cross-spectral matrix. 

2.1.2 Unknowns: source vector 

From this measurement, it is desired to estimate the source amplitude on a grid constituted of ݊ assumed 
source positions. There is no initial restriction on the source grid, except that it has to be discrete and finite. 
This means that the grid can be a line, a planar surface, a curved surface or a 3D volume. The sources are 
represented by a column vector noted ࢗ ∈ ԧ࢔ of dimension	ሾ݊, 1ሿ. If  ࢖ is a FFT snapshot, ࢗ is expected to 
be a FFT snapshot of the source amplitudes responsible for the measurement in	࢖.  

Before going further, it is important to note that an “acoustic source” is usually defined as a minimum region 
in the physical space for which the acoustic radiated power is not zero. In most aeroacoustic applications it is 
clear that these sources are continuous and extended volumetric regions, often located in the vicinity of 
obstacles and turbulent shear region in general. There is no reason for the scanning grid to match perfectly 
the physical source region. In this regard, it is desired to obtain in ࢗ a complex amplitude estimate of 
equivalent sources defined by the scan grid, for which the radiated acoustic power is equal to the radiated 
power of the physical source region.  The meaning of the term “equivalent” is then defined by the 
propagation model.  

2.1.2 Assumed model: transfer matrix 

The link between the source and the sensors data is given by a known transfer model which is represented by 
the complex matrix ࡳ of dimension	ሾ݉, ݊ሿ. Each column of ࡳ is thus the equivalent of the steering vector in 
the beamforming technique. In most cases (but not all), it is chosen as a physical propagation operator: a 
column of  ࡳ  is the complex pressure generated on all the microphones under the influence of a given unit 
source located on the scan grid. A common formulation for an element in	ࡳ is the 3D free field Green 
function for a microphone ݅ and a source ݆ separated by a distance ݎ௜௝: 

௜௝ࡳ ൌ 	
1
ߨ4

݁ିఐ௞௥೔ೕ

௜௝ݎ

(0.1) 
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with ݇ ൌ
ଶగ௙

௖బ
 the wavenumber and ܿ଴ the speed of sound and	ߡ the notation for the unit imaginary number to 

avoid confusion in index	݅. Analytical expressions of the elements of ࡳ can take many forms: it is possible to 
include reflexion aspects on plane by adding image sources, to include scattering effects or propagation 
through shear flows using analytical formulations. A numerical software can also be used to compute the 
propagation function between the source and the microphone including all scattering effects. At last it is 
possible to directly measure the transfer function using a calibrated small source at the price of a tedious 
experimental procedure.  

2.1.3 Matrix Formulation 

The problem of source identification is now reduced to a simple discrete 	ሾ݉, ݊ሿ linear problem: 

࢖ ൌ  (1) ࢗࡳ

Where the unknown vector ࢗ is sought given a measured vector ࢖ and an assumed propagation matrix ࡳ. In 
this expression, ࢖ results from the contribution of all sources in the scan grid at the same time. This is why 
this family of method can deal with perfectly correlated sources.  

The relation between dimensions ݉ and ݊ determines the nature of the mathematical problem. If there are 
less microphones than assumed source position (݉ ൏ ݊ሻ, there are more unknowns than independent 
equations. The problem is said under-determined and there exist an infinity of distinct solutions satisfying 
equation (1). On the contrary if ݉ ൐ ݊, there are more independent equations than unknowns, the problem is 
over-determined and it is most certain that there exists no vector ࢗ solving exactly equation (1).  

In practice, the number of equivalent sources used for representing the source is usually higher than the 
number of available measurements. This leads to an under-determined and ill-posed problem in the sense of 
Hadamard1: it has an infinite number of solutions. A choice has to be made among all these solutions; it 
should be based on an additional criterion which is defined in the following.  

2.2 Pseudo-inverse solution for underdetermined systems 
2.2.1 General properties 

A powerful tool for solving equation (1) is the Moore-Penrose pseudo-inverse operator. It is a generalization 
of the matrix inverse operator and valid for non-squared matrix. The pseudo inverse matrix of ࡳ noted	ࡳା  is 
the only matrix	ሾ݊,݉ሿ satisfying the following three conditions 

ࡳାࡳࡳ ൌ  ࡳ

ାࡳࡳାࡳ ൌ  ାࡳ

 are Hermitian matrices ࡳାࡳ ା andࡳࡳ

(2.1) 

(2.2) 

(2.3) 

It is a less restrictive version of the conditions required for the standard inverse ି࡭૚of a squared 
matrix	:࡭	ି࡭૚࡭ ൌ ૚ି࡭࡭ ൌ  ା is equal to the࡭ ,Besides in the specific case of full-rank squared matrices .ࡵ
standard inverse matrix	ି࡭૚ [5].  

Assuming that such a matrix is available, it is clear that a source vector built on ࡳାusing  ࢗ෥ ൌ  is a  ࢖ାࡳ
solution of (1) since	ࢗࡳ෥ ൌ ࢖ାࡳࡳ ൌ ࢗࡳାࡳࡳ ൌ ࢗࡳ ൌ  The pseudo-inverse is thus a tool to provide one of .࢖
the exact solutions of problem (1). This specific solution has an additional interesting property: it can be 
demonstrated that solution	ࢗ෥   is the exact solution of (1) with the smallest 2-norm: 

1 The three conditions for a well-posed problem suggested by Hadamard are existence, uniqueness, stability of the solution. 
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෥ࢗ ൌ 		࢖ାࡳ ൌ argmin
ԧ೙∋ࢗ

ሺ‖ࢗ‖૛ such that ࢖ ൌ  ሻ (3)ࢗࡳ

Actually this minimum 2-norm property is one possible aforementioned selection condition among all 
solutions of (1). It can be physically justified because ‖ࢗ෥‖૛ can be seen as the total energy of the source 
region solution and the minimization of this quantity can be linked to the general principle of least action.  

2.2.2 Practical calculation 

An algorithm2 to compute	ࡳା is based on the Singular Value Decomposition (SVD) of matrix	ࡳ. As the 
pseudo-inverse is a generalization of the inverse operator, the SVD is a generalization of the Eigen Value 
Decomposition for non-squared matrices. Any rectangular matrix ࡳ of size 	ሾ݉, ݊ሿ can be decomposed in a 
unique way into three matrices such that 

ࡳ ൌ  (4) ∗ࢂࡿࢁ

∗ࢁࢁ ሾ݉,݉ሿ such that	being a unitary matrix of size ࢁ ൌ ࢁ∗ࢁ ൌ ,ሾ݊	 is a unitary matrix of size ࢂ ,௠௠ࡵ ݊ሿ 
such that ࢂࢂ∗ ൌ ࢂ∗ࢂ ൌ  matrix is a ࡿ The .ࢂ stands for the conjugate transpose (hermitian) matrix of ∗ࢂ .௡௡ࡵ
rectangular diagonal 	ሾ݉, ݊ሿ matrix (i.e. such that ࡿ௜௝ ൌ 0	if ݅ ് ݆). The diagonal elements of ࡿ are called 
“singular values” (SV); they are all positive and sorted in decreasing order. Based on ࡿ, another diagonal 
matrix ࡿା  of size 	ሾ݊,݉ሿ can be calculated following: 

௜௜ࡿ
ା ൌ

ଵ

೔೔ࡿ
 if ࡿ௜௜ ് 0 

else ࡿ௜௝
ା ൌ 0, ∀݅ ൑ ݊, ݆ ൑ ݉ 

(5) 

The matrix ࡿାis actually the pseudo-inverse of matrix ࡿ because it satisfies conditions (2). The pseudo-
inverse of ࡳ can then be constructed using ࡿାfollowing	ࡳା ൌ  ∗ࢁାࡿࢂ It can be checked easily that .∗ࢁାࡿࢂ	
also satisfies conditions (2). As a summary, the solution ࢗ෥ ൌ  is the exact solution of problem (2) with ࢖ାࡳ
the smallest 2-norm. This formula generates satisfying results in the case of a simulated monopole without 
additional noise for instance.   

2.2.3 Stability analysis 

However the naive pseudo-inverse solution suffers from a major drawback: the solution ࢗ෥ may not be stable 
under small variations in either ࢖ or ࡳ. The ability of the problem to produce stable or unstable solutions is 
called its conditioning; it is quantified by the condition number 

ߪ ൌ  (6) ࡲ‖ାࡳ‖ࡲ‖ࡳ‖

Where‖ࡲ‖ࡳ ൌ ට∑ ∑ หࡳ௜௝ห
૛࢔

ୀ૚࢐
࢓
ୀ૚࢏  is the Frobenius norm of matrix ࡳ. The link between ߪ and the stability 

characteristics is the following: considering a small variation		࢖ࢾ in the measured vector, a variation in the 
estimated solution		ࢗࢾ෥ is induced.  Since problem (1) is linear, we have the relationship ࢗࢾ෥ ൌ  which ,࢖ࢾାࡳ
implies the norm inequality	‖ࢗࢾ෥‖૛ ൑ ࢖	૛. At the same time, since‖࢖ࢾ‖ࡲ‖ାࡳ‖ ൌ ૛‖࢖‖ ෥, we haveࢗࡳ ൑
  ෥‖૛. Combining these two inequalities leads toࢗ‖ࡲ‖ࡳ‖

෥‖૛ࢗࢾ‖
෥‖૛ࢗ‖

൑ ࡲ‖ࡳ‖ࡲ‖ାࡳ‖
૛‖࢖ࢾ‖
૛‖࢖‖

ൌ ߪ
૛‖࢖ࢾ‖
૛‖࢖‖

(7) 

2 The SVD algorithm to compute the pseudo-inverse matrix is interesting because of the possibility to easily compute a 
regularized solution as will be presented in section 2.3.2 
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In other words, the relative variation of the norm of the solution under variations of the measurement is 
bounded by the condition number ߪ which depends only on the model matrix	ࡳ. This explains its crucial role 
in the sensitivity analysis of the problem. 

A different view angle can explain the role of ߪ. It can be demonstrated that an equivalent mathematical 
expression for ߪ is  

ߪ ൌ
ଵࡿ
௠ࡿ

(8) 

Where ଵܵ is the highest singular value of	ܩ and ܵ௠is the minimal singular value.  The latter represents the 
smallest contribution to ࢖ in the direct problem ࢖ ൌ  but leads to the highest contribution in the estimated ࢗࡳ
solution	ࢗ	෥  (because	ࡿ௠ା ൌ  it represent the ;ࡳ	ଵ is the maximal singular value ofࡿ	௠). On the contraryࡿ/1
most significant contribution to ࢖ in the direct problem but leads to the smallest component in 	ࢗ	෥ . 
Considering that we deal with measured data ࢖, those minor contributions in the direct problem are often 
tarnished with noise, which should not be unreasonably amplified in the inversion procedure. In practice, this 
leads to solutions for which small deviations on the measured data are matched at the price of very large 
fluctuations of the source vector. The obtained result is most probably highly different from the physical 
solution. The sensitivity to measurement noise can then be estimated by the ratio of the highest SV to the 
smallest non-zero SV. This matches expression (8) given for the condition number ߪ. 

The condition number is by construction higher than 1 and is an indicator of how difficult problem (1) will 
be to solve. The closer to 1 ߪ is, the less sensitive to noise matrix	ࡳ will be.  Typical values above which the 
inversion becomes really difficult is	10ଷ. Since ߪ depends only on matrix	ࡳ , no measurement is needed in 
this analysis. The minimization of ߪ can be a powerful tool to optimize the array microphone locations. 

2.3 Regularization 

In the last section we have seen that the naive pseudo-inverse operator leads in underdetermined conditions 
to an exact solution of the problem ࢖ ൌ  the one which has the minimum 2-norm. In practice, this ,ࢗࡳ
solution can be subject to instability which is due to the inversion of smallest singular values in the model 
matrix. The principle of controlling the irregularity of the inverse problem has produced a furnished 
literature on “regularization procedures”.  Only a reduced number is presented in this document.  

2.3.1 TSVD 

A first pragmatic approach is to get rid of those undesired “small” singular values. Assuming that we have 
determined a minimum SV	ࡿ௠బ

 to consider, we can compute a degraded matrix ࡿሺ௠బሻା which only accounts 
for the SV above this threshold,      

௜ࡿ
ሺ௠బሻା ൌ

ଵ

೔೔ࡿ
 if ࢏ ൑ ݉଴ 

else ࡿ௜௝
ሺ௠బሻା ൌ 0

(9) 

A degraded pseudo-inverse ࡳሺ௠బሻା ൌ  is then used. This type of regularization is called∗ࢁሺ௠బሻାࡿࢂ	
“Truncated Singular Value Decomposition”. High amplitude fluctuations in ࢗ	෥ 	are indeed reduced but the 
solution may not be convergent in ݉଴, in the sense that neighbour values for ݉଴	give rise to very different 
results. It is then difficult to choose the closest one to the physical solution.  
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 2.3.2 Tikhonov regularization 

Another approach is to apply a smooth filter on the singular values using a real quantity ߣ called the 
regularization parameter. The idea is to attenuate the influence of smallest SV while leaving almost 
unchanged the highest ones, with a progressive transition. This approach is known as the “Tikhonov 
regularization” or “ridge regression” in the field of statistics. The practical expression used for the S 
inversion reads  

௜ࡿ
ሺఒሻା ൌ

೔೔ࡿ
೔೔ࡿ

૛ାఒ૛
  (10) 

If ߣ is correctly chosen, for highest singular values ࡿ௜௜
૛ ≫ ௜ࡿ and	૛ߣ

ሺఒሻା ≅
ଵ

೔೔ࡿ
 which is the expected result. 

For the smallest one ࡿ௜௜
૛ ≪ ௜ࡿ ૛ andߣ

ሺఒሻା ≅
೔೔ࡿ
ఒ૛

. Now the contribution to ࡿሺఒሻା of the smallest SV are all the 

more mitigated than they are small, which answers to the instability problem. After regularization, the 
effective condition number is greatly reduced: 

ሺఒሻߪ ൌ
௠ࡿ
ሺఒሻା

ଵࡿ
ሺఒሻା ≅

ଵࡿ௠ࡿ
૛ߣ

≪
ଵࡿ
௠ࡿ

ൌ ߪ
(11) 

To work properly, the regularization parameter should be carefully selected since its value may lie in the 
range	ሾࡿ௠,  ଵሿ in unstable cases. The highest this parameter, the stronger the regularization. Moreover inࡿ
stable cases, when ߪ is close to 1, the regularization parameter should be close to 0, since formulation (6) is 
entirely satisfying. Procedures for automatic selection of the Tikhonov regularization parameter are also 
numerous, some are presented in section 2.4.3. 

It is interesting to note that the regularized solution ࢗ෥ሺఒሻ ൌ  is not a solution of (1): the ࢖	∗ࢁሺఒሻାࡿࢂ
residueฮ࢖ െ ෥ሺఒሻฮࢗࡳ

૛
 is not zero because ࡿࡿሺఒሻା ് While the initial problem can be formulated as the . ࢓࢓ࡵ

minimization of the cost function‖࢖ െ  ෥ሺఒሻ is the solution of another least square problem, calledࢗ  , ૛‖ࢗࡳ
the Tikhonov problem:  

෥ሺఒሻࢗ  ൌ argminࢗ∈ԧ࢔ሼ‖࢖ െ ଶ‖ࢗࡳ
ଶ ൅ ଶ‖ࢗ‖ଶߣ

ଶሽ (12) 

Expression (12) can be interpreted as the fact that the amplitude of the solution ฮࢗ෥ሺఒሻฮ
૛
 is controlled at the

price of a small increase in the fit errorฮ࢖ െ ෥ሺఒሻฮࢗࡳ
૛
. The balance is set by the parameter	ߣ. In other words,

we have introduced the a priori information that the 2-norm of the source should not be too large, which 
allowed us to slightly modify the initial problem and find a solution which is more likely to be close to the 
physical situation than the naïve solution. Equalling ‖࢖ െ  ૛ to 0 and finding the solution with the‖ࢗࡳ
minimum ‖ࢗ‖૛ is not equivalent to jointly minimize ‖࢖ െ   .૛‖ࢗ‖૛ and‖ࢗࡳ

2.3.3 Regularization parameter selection 

In the Tikhonov regularization procedure, the choice of the parameter ߣ plays a crucial role. Several 
selection strategies can be mentioned. In this document, we are presenting the most common one, the L-
curve technique. 

The L-curve is one of the standard tool to select an appropriate value for ߣ. The idea is to note that noisy 
data are more likely to stimulate the instability of the inversion. They require a stronger regularization than 
clean data. Consequently, the chosen value for ߣ should depend on	࢖. A wide range of parameter is tested 
and the solution ࢗ෥ሺࣅሻ ൌ ࢖Both the residual norm ฮ .ߣ		is computed for each value of		࢖ሻାࣅሺࡳ െ ሻฮࣅ෥ሺࢗࡳ

૛

Microphone Array Techniques Based on Matrix Inversion 

5 - 6 STO-EN-AVT-287 



and the solution norm ฮࢗ෥ሺࣅሻฮ
૛
are plotted against each other in log scales. It is expected that this plot

(called ‘L-curve plot’) exhibits a favourable trade-off between these two quantities. An example of this 
plot is proposed in Figure 1 for a microphone array configuration depicted in the legend. The condition 
number of ࡳ in this case is	1.3 ∗ 10ଽ, which indicates that the problem is highly unstable. For array 
techniques such situations typically arise in the low frequency range because the steering vector between 
two scan points are almost collinear. 

Figure 1: L-curve for the simulated case of a monopole in free field, situated in front of an array of 54 
microphones, 50cm diameter and situated 50cm away from the array. F=50 Hz, the square grid is twice the 
width of the array, SNR = 0 dB. 

Solutions in the top-left corner of Figure 1 correspond to low values of ߣ: the regularization is too weak, 
the residue is close to zero but the solution norm is very high. In opposition, in the bottom-right corner, 
high values of ߣ represent over-regularized solutions for which the system is highly damped: the residue is 
very high and the solution norm is close to zero. In many cases, the obtained curve forms a L-shape, it is 
convex and a particular point can be located at the bottom of the elbow, represented by a red circle on 
Figure 1. This point corresponds to the optimized value of  ߣ rendered by the L-curve method. Departing 
from this point will either produce a high increase in the solution amplitude or in the fit error.  

(a) Reference  (b) 
ఒ౥౦౪
ଵ଴
, C = 45% (c) ߣ୭୮୲, C = 60% (d) 10ߣ୭୮୲,	C = 28% 
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Figure 2: Pressure map of a vibrating plate at 397 Hz reconstructed using various values of the 
regularization parameter	ࣅ, from [8].  (a) Reference pressure field, (b) solution using a low value ߣ ൌ  ,୭୮୲/10ߣ
(c) solution using an optimal value ߣ ൌ ߣ ୭୮୲, (d) solution using a high valueߣ ൌ  ୭୮୲. The same color barߣ10
has been used for the four plots. 

An illustration of these situations is given in Figure 2. It is extracted from examples given in the didactical 
paper by [8]. A vibrating plate is simulated and radiated pressure signals are generated at the microphone 
locations with the addition of noise. An inverse technique (Near-field acoustic holography) is used to 
estimate the pressure field on the plate surface from these synthetic data. Figure 2.a is the reference 
pressure field which is analytically computed, Figure 2.b is the reconstruction pressure field using an 
under-regularized inverse process. The characteristic length of pressure fluctuations on the plate is much 
smaller than on the reference case. The modal pattern can hardly be recognized. The match between the 
reference field and the reconstructed field can be evaluated by the covariance coefficient C indicated 
below the figures.  Figure 2.c is constructed using an optimized value of the regularization parameter. The 
initial pattern is almost perfectly recovered. Figure 2.d is constructed with a higher value of ߣ. The massive 
damping of the solution is clearly visible. 

2.3.4 Alternative regularization 

The choice of minimal ฮࢗ෥ሺࣅሻฮ
૛
 as the a priori information to control the solution in eq. (12) seems natural

but somewhat arbitrary. It is absolutely possible to introduce other controls, as to use a matrix ࡯ as in the 
following problem 

minimize ∶ 	 ࢖‖ െ ଶ‖ࢗࡳ
ଶ ൅ ଶ‖ࢗ࡯‖ଶߣ

ଶ (13) 

If ࡯ is correctly chosen, it can be used to control the smoothness of the solution via the discrete derivative 
coefficients. This leads to the family of methods related to Iterative Reweighted Least Squares (IRLS).  

Another idea is to impose the number of non-zero elements in the source map‖ࢗ‖૙ ൌ cardሼ࢏ࢗ	/	࢏ࢗ|| ് ૙ሽ to 
be as small as possible.  It is assumed that the number of true sources is in small number or located in a very 
small region of the source map. This is a way to control the sparsity of the solution and it leads to the new 
problem: 

minimize ∶ 	 ࢖‖ െ ଶ‖ࢗࡳ
ଶ ൅  ૙ (14)‖ࢗ‖ଶߣ

Unfortunately this problem happens to be very difficult to solve since it is known to be a non-convex 
mathematical problem. Instead, it is chosen to try a relaxed form of problem (14) using the L1 norm 
૚‖ࢗ‖ ൌ ∑ |࢏ࢗ|

࢔
ୀ૚࢏  raising the Lasso problem  

minimize ∶ 	 ࢖‖ െ ଶ‖ࢗࡳ
ଶ ൅  ૚ (15)‖ࢗ‖ଶߣ

This last problem is the starting point of a lot of identification methods based on source sparsity assumption 
[6-10]. 

Two methods belonging to the IRLS family and associated with Lp-norm (with (0≤p≤2) will be discussed 
later (§3.4). 

3.0 APPLICATION METHODS 

The general inverse approach detailed in section 2.0 has been developed in various versions to address the 
practical problem of sound source localization and quantification. Each of them has a different understanding 
of the measured vector ࢖ or the unknown source vector	ࢗ. A major difference between them also resides in 
the displayed quantities. These particularities make the methods suited for some situations and not for others. 
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Some of them are presented in this section: the acoustical holography, the iBEM method, the inverse 
Equivalent Source Method, the Generalized inverse beamforming, the Bayesian Inference; we will try to 
underline their special features. 

3.1 Plane wave acoustical holography 
3.1.1 Standard acoustical holography 

The acoustical holography (AH) technique appeared in the 1960’s. It aims at reconstructing the planar 
pressure3 field on a source plane from a set of distant microphone measurements on another plane. Since the 
geometry is planar, it appears natural to work with plane wave components of the sound field, so as to 
formulate the problem in the wavenumber domain. Plane waves are described as functions of physical 
coordinates ሺݔ, ݖ The source plane is located at .ݖ	ሻ while the propagation is described alongݕ ൌ  while the	௦ݖ
measurement plane is at ݖ ൌ  is composed of wavenumber Fourier components of the ࢖	,௛  In this techniqueݖ
measured pressure sound field at a given frequency	݌ሺݔ, ,ݕ ,௛ݖ ߱ሻ: 

࢖ ൌ ऐ࢞ऐ࢟ሺ݌ሺݔ, ,ݕ ,௛ݖ ߱ሻሻ (16) 

Where ऐ࢞ stands for the Discrete Fourier Transform in the ݔ-direction according to the available 
arrangement of sensors. The dimension	݉ of ࢖ is subject to the sampling criterion and is limited by the 
extent of the array and the spacing between microphones.  

Similarly the source vector ࢗ is constituted of the wavenumber Fourier components of the pressure sound 
field on the reconstruction plane at ݖ ൌ  :௦ݖ

ࢗ ൌ ऐ࢞ऐ࢟ሺ݌ሺݔ, ,ݕ ,௦ݖ ߱ሻሻ (17) 

The elements of the matrix ࡳ are the transfer function from the reconstruction plane ݖ ൌ  ௦ to theݖ
measurement plane ݖ ൌ  are both plane wave components of axial ࢖  and  ࢗ  ௛. The i-th element inݖ

wavenumber ݇௭
ሺ௜ሻ ൌ ට݇ଶ െ ݇௫

ሺ௜ሻଶ െ ݇௬
ሺ௜ሻଶ; thus ࡳ௜௝simply reduces to :

௜௝ࡳ ൌ ݁ఐ௞೥
ሺ೔ሻሺ௭೓ି௭ೞሻ if ݅ ൌ ݆

௜௝ࡳ ൌ 0 if ݅ ് ݆ 

(18) 

One can see that the transfer matrix is diagonal, which makes the formal resolution of (1) a trivial task. An 

additional restriction is made ; only the propagative plane waves are considered, those for which ݇௭
ሺ௜ሻ is real.

In this case, the problem is well-posed and the existence and the uniqueness of the solution is guaranteed. 

Moreover the inverse matrix is easily computed since it is also a diagonal matrix: ࢏࢏ࡳ
ି૚ ൌ ݁ିఐ௞೥

ሺ೔ሻሺ௭೓ି௭ೞሻ. This
allows to estimate ࢗ෥ ൌ  The pressure field on the source plane is finally computed using the double .	࢖૚ିࡳ
spatial inverse Fourier transform of ࢗ෥: 

,ݔ෥ሺ࢖ ,ݕ ,௦ݖ ߱ሻ ൌ ऐ௫
ିଵऐ௬

ିଵሺࢗ෥ሻ (19) 

The results are displayed as a pressure map in the reconstruction plane which is a bit specific to this method 
since inverse method often directly plot the source amplitude ࢗ෥ in dB. 

3 Or the three components of the surface velocity field, or the acoustic intensity vector 
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 3.1.2 Nearfield Acoustical Holography 

In the standard AH, the spatial resolution is limited to half the acoustic wavelength since the source plane is 
described using propagative plane waves. This is a real limitation, especially at low frequencies. To 
overcome this drawback, Nearfield Acoustical Holography (NAH) was developed in the 1980s [11-14] and 
revolutionized the field of diagnosis of acoustic radiation of vibrating structures. The idea is to include a 
limited number of evanescent waves in the model matrix ࡳ. In other words, terms of the DFT of 

,ݔሺ݌ ,ݕ ,௛ݖ ߱ሻ for which ݇ଶ ൏ ݇௫
ሺ௜ሻଶ ൅ ݇௬

ሺ௜ሻଶare not dumped anymore. Provided that the array is located in the
near-field of the source plane, the higher wavenumber components add spatial information to the solution. 

The resolution is far better than in the standard AH. The counter-effect is that ݇௭
ሺ௜ሻ ൌ ݅݇௭

ሺ௜ሻᇱ  is now a pure

imaginary number and the inversion formula becomes ࢏࢏ࡳ
ି૚ ൌ ݁௞೥

ሺ೔ሻᇲሺ௭೓ି௭ೞሻ: evanescent waves are

exponentially increased during the back-propagation process and the higher the axial wave number ݇௭
ሺ௜ሻᇱ the

higher this exponential amplification. The stability problem arises again. As a consequence a regularization 
procedure is undertaken which is very similar to the Tikhonov technique: the smallest components in ࡳ are 
damped, those corresponding to the highest wavenumbers. A cut-off frequency for the ݇-space filter is then 
chosen in a specific way depending on the measurement and the offset ݖ௛ െ  ௦ among others. The cut-offݖ
frequency is thus a regularization parameter with the physical meaning of a spatial low-pass filter.  

3.1.2.1 First laboratory experiment 

A laboratory example is given as the first historical application of NAH by [13]. They used an innovative 
and powerful measurement system (in 1985) with 256 microphones (Figure 3 left) to image two airborne 
sound sources. The array is placed in the extreme near field of the sources in order to measure the evanescent 
wave components. Consequently source directivity and total power radiated into the half-space above the 
source can properly be estimated.  

Figure 3: (left) Sketch of the measurement system used by [13] for Nearfield acoustical holography, (right) 
Computed acoustic intensity vector field from two point source 

A 64 x 64 point hologram is calculated with standard holography and NAH. The comparison in Figure 4 
exhibits the advantage of taking into account evanescent plane waves. Acoustic vector intensity field (energy 
flow patterns) is also calculated in a plane containing the two point sources and perpendicular to the 
hologram plane (Figure 3 right). 
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(a) (b) 

Figure 4: Holographic reconstruction of the intensity of two point sources (a) Nearfield 
Holography (b) conventional Holography. From [13]. 

3.1.2.2 Wind tunnel experiment 

NAH has also been applied to wind tunnel experiments. Hald & al.[15] used a moving microphone array on 
the side of a car in the Honda low-noise wind tunnel with a flow speed of 100 km/h. The scanned plane is 
defined at a distance of 250 mm from the center of the side window. A reference microphone installed in the 
vehicle is used to synchronize the different array location measurements; this allows to reject microphone 
self-noise and wind tunnel back ground noise. It is then possible to make holographic calculations [16] for 
precise localization of the turbulence noise sources and provide valuable information in car noise comparison 
in the low frequency range. 

Figure 5: (top left) Holographic set-up for measurement in the Honda low-noise wind-tunnel; (right and bottom 
left) Outside sound pressure distribution on the side surface of three different cars at a windspeed of 
100 km/h. Frequency range is 194 Hz to 792 Hz A-weighted. From[16]. 

An important practical limitation of AH and NAH resides in the spatial DFT processing. A regular 
microphone array is needed to obtain a regular spatial sampling of the acoustic field. The spatial spacing 
between two adjacent microphones depends on the frequency range in study but amounts often to a few 
centimeters. In the meantime the array is expected to cover the whole source region to minimize the spatial 
aliasing. This can results in a very large and often prohibitive number of microphones. This situation can be 
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partly avoided using sequential measurements and reference microphones. However this synchronization 
technique introduces data loss as soon as the number of incoherent sources is large. Another important 
drawback is that regular microphone arrangement is the worst array choice for many sound localization 
techniques such as beamforming. In beamforming irregular arrangements [10] are sought to avoid 
information redundancy and sidelobe constructive interference. This assertion put NAH apart from other 
methods because they require a special microphone array. Another drawback of the DFT processing is the 
spatial windowing effects.  

3.1.3 Holography for non-regular arrays: SONAH  
A major advance in the field occurred in 2001. To overcome the limitations of the DFT process, Hald [18] 
proposed a slightly different approach called the Statistically Optimal Near-Field Acoustical Holography 
(SONAH). In this method the vector ࢖ representing the measurement is not anymore constituted of spatial 
Fourier components but of the complex time-harmonic sound pressure measured at a set of measurement 
positions. Thus dimension ݉ is now the number of microphones instead of the number of plane wave 
components chosen to describe the acoustic field. On the contrary ࢗ representing the sound field closed to 
the source is the same than in the NAH method and is filled with wavenumber components. Dimension ݊ 
is the number of Fourier components used to describe the source sound field; it includes some evanescent 
plane waves.  

The huge advantage of proceeding this way is that planar arrays of arbitrary arrangement can now be used 
for holography as well as other techniques. This allows to use a complementary approach with the 
SONAH technique in the lower frequency range for instance (convenient for its advantageous spatial 
resolution) and beamforming based techniques in the higher frequency range (convenient for their 
stability).  

The price to pay is that the transfer matrix ࡳ is now full instead of diagonal since each wavenumber 
component has a non-zero contribution to the complex pressure in ࢖. The analytical expression to fill 
matrix ࡳ is thus similar to eq. (18) except that ݖ௦ now depends on the microphone index ݅ and the axial 
wave number the ݇௭ is depends on the considered column of ࡳ 

௜௝ࡳ ൌ ݁ఐ௞೥
ሺೕሻሺ௭೓

ሺ೔ሻି௭ೞሻ (20) 

The inversion is thus more time consuming but can be handled using tools presented in section 2.2. A 
Tikhonov regularization technique can also be used to find a more stable approximate solution.  

3.2 Acoustical holography on alternative wave basis 
In their original form, holography techniques are based on plane wave decomposition of the sound field.  It is 
perfectly possible to decompose the field on other wave basis such as cylindrical waves [19] or spherical 
harmonics [20] depending on the set-up geometry. The only requirement is to use a complete basis for the 
description of the pressure field generated by a source and measured by the array. Each elementary wave is 
expected to form a solution of the wave equation in the chosen coordinate system.  

3.2.1  Cylindrical holography 

A variation of the NAH method has been used on an open jet experiment [21]. The cylindrical symmetry 
of the experiment suggests to use cylindrical wave instead of plane waves in matrix ࡳ. This gives rise to 
Cylindrical Near-field Acoustical Holography. It is used for visualizing the sound radiation from an open 
jet in order to identify the source strength distribution and the radiation patterns (Figure 6). The ability of 
the cylindrical NAH to quantify noise source in three-dimension and to determine the far field radiation 
from such a model is demonstrated. 
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Figure 6: (left) Holographic set-up for measurement (six linear arrays and a circular array); (top right) 3D 
sound pressure distribution of the first partial field (real part); (bottom middle and right) sound field 
reconstructed by NAH and measured at 1kHz. From ref [21]. 

3.2.2 Spherical holography 

In situations where the directivity of a specific source is to be investigated, a spherical array can be used 
such that the source is fully encompassed. This geometry suggests to decompose the pressure field onto 
the basis of spherical harmonics. These functions are orthonormal to each other and are centered on a 
specific point of the 3D space, which is often the center of the source of interest. The unknown ࢗ vector is 
then filled with spherical harmonic complex amplitudes, to be determined from the measurement on a 
sphere of the array radius. A clear and complete description of the spherical near-field acoustic holography 
method is given in the book of Williams [20]. This method is powerful since it provides a continuous 
description of the directivity of a single source based on discrete measurements. Moreover an 
extrapolation of the sound pressure level to the far field can be undertaken in a proper way.  

A variation of this method has been developed by [22] with the Field Separation Method. The specificity 
is that a double microphone layer is used in order to denoise the measurement from external sources in a 
similar approach than the intensimetry technique.  

Another similar technique is the Helmholtz Equation Least Squares (HELS) [23] which uses a single layer 
of microphones to estimate the velocity field of a vibrating plate. The number of spherical harmonics to be 
included in ࡳ has to be chosen with care and the authors propose an optimization procedure of this 
parameter, together with a regularization scheme to the inverse problem. 

As an industrial example, the FSM has used on the Environmental Control System of a business jet 
aircraft on ground with a double-layer quarter-sphere array[24].  
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Figure 7: (Left): photograph of array used for the FSM method on the ECS system of a business jet aircraft 
[24], (right) Computed directivity on tonal noise around 1kHz 

3.2.3  Holography for arbitrary wave functions 

Plane wave, cylindrical and spherical near-field holography methods are limited in their original formulation 
to the reconstruction of fields defined by coordinates with separable geometries. A large industrial demand 
made it possible to generalize the method to any geometry. With the advent of numerical methods and the 
development of integral methods, inverse methods based on boundary element solver have emerged [25-27], 
such as iBEM (for Inverse Boundary Element Method). The basic idea is to use a numerical software to fill 
the transfer matrix ࡳ. The integral Kirchhoff-Helmholtz equation allows to express the relation between the 
pressure field measured at a point of the space and the wall pressure or the normal velocity at the wall of the 
object to be characterized. Two different least-square problems are formulated: the unknown vector ࢗ either 
represent vibrating surface velocity or pressure monopole amplitudes placed on the studied surface. In both 
cases the integral equation is solved by the Boundary Element Method (BEM). Once the propagation model 
is known, two distinct inverse problems are successively solved in order to reconstruct the wall pressure and 
the normal velocity at the wall. 

These methods apply both to internal [28] and external [29] acoustic radiation problems. The first 
publication on the subject dates from the late 1980s [25]. The advantage of this method lies in its geometric 
flexibility: no constraint on the geometry of the array or object to be characterized is imposed. Nevertheless, 
it has been shown that the obtained results depend very much on the choice of microphone position [30]. 
Iterative methods to optimize the positioning of microphones have been developed to ensure independence 
of the components of the transfer functions. Indeed, the conditioning of the matrix ࡳ can be improved by 
decreasing the degree of dependence between the elements of the model [31]. This method is called 
"Effective Independance" ("Efi") [28, 30, 32]. For a given frequency range, it makes it possible to determine 
from among a large number of microphone positions the combination of microphones which ensures an 
independence of the main components of the transfer matrix. 

The iBEM method has two major drawbacks. The first is the computational cost because a BEM solver is 
required. Indeed, the integral formulation requires a discretization of the object of interest sufficiently fine to 
respect the rule of 6 nodes per wavelength. The second disadvantage is the non-uniqueness of the solution 
computed by BEM method [33]. This problem, well known to the numerical experts, is linked to the 
calculation of irregular resonance frequencies (also called characteristic frequencies) of digital origin which 
correspond to the internal eigen frequencies of the geometrically isolated elements of the acoustic model. 
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3.3 Inverse methods based on point sources 
Another intuitive development of inverse techniques to sound source location is to use point source models 
(free field Green functions) in the ࡳ matrix instead of a wave description basis. Some techniques belonging 
to this family are presented in this section: the Inverse Equivalent Source Method, the Generalized Inverse 
Beamforming and the Bayesian Inference.  

3.3.1 Inverse Equivalent Source Method (iESM) 
In this method [34], ࢖ is one of the principal components (PC, also called eigenmode in the GIB 
technique) of the cross-spectral matrix (CSM): the eigenvalue decomposition is applied to the  CSM ࡯ 
with ࡯ ൌ  the diagonal matrix of ordered eigenvalues. A principal ࡰ being a unitary matrix and ࡺ ,∗ࡺࡰࡺ
component of  ࡯ is ࢖௜ ൌ ඥࡺ࢏࢏ࡰ:௜ . Each PC is expected to represent a group of coherent sources. The 
transfer matrix ࡳ is filled with 3D free field Green function (eq. 0.1).  In a first approach, the pseudo-
inverse tool is used to solve the problem with the addition of a Tikhonov regularization. Two important 
drawbacks can then be exhibited:  

1. The equivalent sources which are close to the array need less energy to generate the same pressure
level at the array position than equivalent sources placed farther away. The close sources are favored
in the minimization process and are attributed a high amplitude. Localization and quantification
problems then arise quickly in configurations where the source domain is large compared to the
array size,

2. In simulations, the source power is largely underestimated if it is derived from computed source
map	ࢗ෥, as compared to the injected source power. The reason is that an identified source is
represented by a spot of coherent monopoles. Due to the energy minimization principle, phases of
the monopoles are such that interference effects produce a directive pattern toward the array. In
other words the radiated energy is minimized in regions where no measurement has be carried out.
Even if rather intuitive this behaviour leads to underestimated results when addressing monopole
sources.

To get rid of these undesirable effects, some modifications have been added to the method. Concerning point 
1, a weighting is applied to the columns of matrix ࡳ in order to normalize the columns which is the inverse 
of the distance	ݎ௜	between each equivalent source and the center of the array. The weighting matrix is then a 

diagonal matrix noted ࢃሺ଴ሻ with ࢃ௜௜
ሺ଴ሻ ൌ minimize	 ௜. The problem to be solved is nowݎ/1 ∶ 	 ࢖‖ െ ଶ‖ࢗࡳ

ଶ ൅

ฮࢗሺ଴ሻࢃଶฮߣ
ଶ

ଶ
which is also (eq. 13) using a diagonal weighting matrix	࡯ ൌ ሺ଴ሻ. The solution is given usingࢃ

a slightly modified form of the pseudo-inverse. To address point 2, it is desired to force the sparsity of the 
result i.e. to try to limit the interference effect by improving the spatial resolution of the method. Such 
approach is possible using an iterative procedure. The inverse problem is successively solved using a 
diagonal weighting matrix ࢃሺ௡ሻ	depending on the equivalent source distribution estimated at a previous step 

ሺ݊ െ 1ሻ: ࢃ௜௜
ሺ௡ሻ ൌ 1/ ቚݍ෤࢏

ሺ௡ିଵሻ	ቚ. This weighting of the transfer matrix by the estimated amplitudes of

equivalent sources of the previous iteration enhances the sparsity of the source distribution because only 
equivalent sources of high amplitudes remain in the end of the algorithm. It is the key principle of the 
Iteratively Reweighted Least Square algorithm to compute sparse reconstruction. 

The choice of the regularization parameter in Eq. (13) is a crucial step in order to achieve a good estimate of 
the reconstructed field. A recent method is derived from the Bayesian framework [35] and is extensively 
evaluated in [34] by means of numerical and experimental validations. The interest of using the Bayesian 
regularization criterion in acoustic inverse problems is demonstrated, mostly because thanks to its 
robustness. iESM being very similar to GIB, a numerical comparison of the two methods is done in [36]. An 
experimental comparison of this method is provided in Figure 8: Qualitative comparison of a subset of the 
NASA 2 case (AIAA Benchmark). Results shown are for the 12.5 kHz one-third octave band. DR means 

Microphone Array Techniques Based on Matrix Inversion 

STO-EN-AVT-287 5 - 15 



 diagonal removal.Figure 8 and Figure 9 in the frame of the AIAA array methods benchmark [45]. The legend 
‘Bayes’ actually stands for the iESM technique using a bayesian regularization. NNLS and Bayes source 
map (Fig. 3) from the University of Lyon contains exactly one source on every slat track and one source on 
the flap side edge. 

Figure 8: Qualitative comparison of a subset of the NASA 2 case (AIAA Benchmark). Results shown are for 
the 12.5 kHz one-third octave band. DR means diagonal removal. 

Figure 9: Power spectral density source maps of the Do728 semispan model at the narrowband frequency 
8496 Hz with a dynamic range of 20 dB for DAMAS (DLR) and NNLS. PSF>0 means that the point spread 
function was forced to be nonnegative. 

3.3.2 Generalized Inverse Beamforming (GIB) 
Ten years ago Suzuki introduced the Generalized Inverse Beamforming (GIB) [37, 38]. The proposed 
improvements from the classical inverse problem are twofold: 

 the unknown vector ࢗ is twice the size of the usual monopole source vector: here the upper half
describes monopole sources while  the lower half part describes dipoles (located at the same place
than monopoles). This is rendered by the propagation description in the columns of matrix ࡳ. This
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description allows to draw simultaneous maps of monopoles and dipoles. The least-square process 
attributes energy either to monopoles or dipoles, depending on the fit with the measurement.  

 the source identification problem is written as minimization of an ܮ௣ (instead of ܮଶ) norm cost
function. While ܮଶ regularization tends to provide smooth and blur acoustic source maps in terms
of localization, the ܮ௣	penalization factor proposed by Suzuki (with 0 ≤ p ≤ 1) tends to recover the
compactness of reconstructed sources. An example given by Suzuki is clarifying this point. Suppose
the actual source is a unique monopole of unit amplitude. If a least-square cost function is used to
identify this source, it is beneficial to split it in two source of amplitude 0.5. This is because the  ܮଶ
norm of the splitted situation ∑|ݍప෥ |ଶ ൌ ሺ0.5ሻଶ ൅ ሺ0.5ሻଶ ൌ 0.5 is lower than the ܮଶ norm of the
unique monopole situation∑|ݍప෥ |ଶ ൌ ሺ1ሻଶ ൌ 1.  This phenomenon does not occur for instance if a
ଵ norm is used. Here choice is made to enhance the sparsity of the target solution, i.e. it minimizesܮ
the number of equivalent sources with non-zero amplitude, rather than to minimize the total energy
of the source map. Finally the ܮ௣-minimization problem is formulated as:

ࢋࢠ࢏࢓࢏࢔࢏࢓ ∶ 	 ࢖‖ െ ଶ‖ࢗࡳ
ଶ ൅ ௣‖ࢗ‖ଶߣ

௣ (21) 

To solve this ܮ௣-norm inverse problem, an IRLS algorithm is used (Iteratively Reweighted Least Squares) 
[38]. It consists in computing the least square solution and introducing a diagonal weighting matrix ࢃሺ௡ሻat 
each iteration ݊. It is linked to the equivalent source amplitudes which were estimated at the previous 

iteration	ࢃ௜௜
ሺ௡ିଵሻ ൌ ቚࢗ෥௜

ሺ௡ିଵሻቚ
ଶି௣

:

෥ሺ௡ሻࢗ ൌ ∗ࡳሺ௡ିଵሻࢃࡳ൫∗ࡳሺ௡ିଵሻࢃ ൅ ൯ࡵଶߣ
ି૚
 ࢖

In Suzuki’s version of GIB, the regularization parameter ߣ is determined by a diagonal loading technique 
similarly to the methodologies employed in Capon algorithms. 

Many experimental results have confirmed its applicability to aeroacoustic source mapping (laboratory 
experiments [38], jet noise [39], jet-flap interaction noise [7]). Figure 7 shows results of a jet –flap 
interaction study obtained by Suzuki [40] with different methods. It is concluded that conventional 
beamforming cannot distinguish multipoles, CLEAN-SC works reasonably, and GIB identifies flap dipoles 
with high resolution. 

Figure 10: Flap interaction study obtained by Suzuki [40] with different methods; (left) conventional 
beamforming (monopole/dipole model); (center) CLEAN-SC method (monopole model); (right) GIB method 
(monopole/dipole model). Approach condition at 12232 Hz. 

3.3.3 Bayesian Inference (BI) 
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As it can be seen throughout this document, information on the physical geometry leads the choice of the 
method to be used: NAH is a good choice for small planar geometries, Cylindrical NAH is excellent in 
free jet configurations, FSM in circular configurations etc…  A strong aspect of the Bayesian approach is 
that it is able to automatically tune the optimal decomposition basis of the acoustic field, depending on the 
geometry and the priori knowledge on the source. Plane waves, cylindrical wave, spherical harmonics are 
just specific cases. Assuming that a decomposition basis is available, the Bayesian Inference (BI) 
technique expresses the inverse problem in the standard form 

࢟ ൌ  (22) ࢉ෡ࡿ

Where ࢟ is the coordinate vector in this basis of the measurement vector ࢉ  ,࢖ is the vector of source 
coefficient expressed in this basis and ࡿ෡ is the propagation operator matrix which turns out to be a 
diagonal matrix. This is not a coincidence, since the “optimal basis” in the Bayesian sense has been 
specifically designed to have this property [35]. The solution is computed with a Tikhonov regularization. 
The regularization parameter is chosen using a Bayesian technique already encountered (but not detailed) 
in section 3.3.1 in the iESM technique. A first special feature of the BI method is thus the tuning of the 
optimal basis; it is briefly introduced at the end of this section. In situation where a regular plane array is 
placed in nearfield of a plate, the optimal basis calculated by Bayesian approach is the plane wave basis. 
The method can also be used to characterize objects with complex 3D shape [44]. 

Another feature of the BI is the use of an inverse technique in a statistical context. In acoustics, energetic 
quantities are modelled by probability density functions (pdf). A realization of the random variable could 
be a Fourier coefficient of a FFT snapshot (at the discrete frequency under study). Experimental errors are 
modelled by a zero-mean Gaussian pdf [42], as a consequence of the Central Limit Theorem. Noise 
correlation between microphones can be modelled by a covariance matrix ષ௕, often chosen diagonal. The 
variance of the pdf is noted β2 and it represents the energy of the noise. Its value is unknown. The 
Bayesian technique is also interesting because it presents a rigorous framework to add prior information 
which is of great help in the sound source localization process [41]. For instance the pdf of unknown 
complex amplitudes q placed at each node included in the source grid is usually modelled using a zero-
mean Gaussian law: before measurements, the probability of having negative and positive amplitude is the 
same for all the nodes. Modelling the pdf of the sources (also called prior pdf) with a Gaussian law is a 
first prior information: the energy of the source is finite and it is modelled by the unknown variance of the 
pdf, noted α2. One could also add a spatial prior information to attribute greater importance on areas 
containing potential sound sources, or use the information about the spatial coherence properties of the 
source. The prior on the source covariance is represented by a noise source covariance matrix ષ௤ of size 
	ሾ݊, ݊ሿ, which is often chosen diagonal.  

To compute the optimal basis, a SVD is operated on the propagation operator whitened by the two 
covariance matrices: ષ௕

ିଵ/ଶࡳષ௤
ଵ/ଶ ൌ  ෡∗. Then the transfer matrix  ઴ from the source physical spaceࢂ෡ࡿ෡ࢁ

to the optimal space is computed using  

઴ ൌ ષ௤
ଵ/ଶ ෡ିଵષ௕ࡿ∗ࡳ

ିଵ/ଶࢁ෡  (23) 

The solution ࢗ෥	is computed from the estimate  ࢉ෤ in this optimal space by  ࢗ෥ ൌ ઴ࢉ෤. Similarly, the 
coordinates of the measurement vector in this reference frame is computed using  

࢟ ൌ ෡∗ષ௕ࢁ
ିଵ/ଶ(24) ࢖ 

The most probable solution	ࢗ෥  is the source distribution which provides the best compromise between the 
fidelity to the noisy measured data	࢖ and the prior information	ષ௤. This compromise is given by the Bayes 
rule which expresses the posterior source distribution by the product of the pdf of the measured data and 
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the prior distribution. The first term is a Gaussian law and it is called the likelihood distribution. Its mean 
is equal to the amplitude of the measured amplitude on each microphone and its variance is equal to the 
energy of the noise β2. The second term has been examined before. The product of these two pdf gives 
another Gaussian law, as illustrated in Figure 11. The most probable value is given by the maximum of 
this posterior pdf called MAP (maximum a posteriori). It has been proven that the maximum of this pdf is 
equivalent to the Tikhonov form solution.  

Figure 11 : Schematic 1D representation of the Bayesian framework simplified from the reference [43]. The 
figure illustrates the Bayes rule which expresses the posterior distribution (dotted line) as the product of the 
likelihood distribution (in red line) and the prior distribution (in black line). 

In the figure, we can observe that the maximum value of the posterior pdf is highly dependent on the 
values of the two standard deviation α2 and β2. It turns out that the ratio of these two quantities definite the 
regularization parameter: η2=α2/β2. If the measured data are informative and noise-free, η2 is high and the 
MAP follows the measurement. Contrary, if η2 is low, the solution is driven by the prior information. The 
optimal estimation of the regularization parameter is also given by applying the Bayes rule [43]. 
Moreover, if a uniform prior distribution is assumed (no prior about the finite energy of the sources), the 
solution depends uniquely on the likelihood and the MAP estimator is equal to the pseudo-inverse of the 
propagator times the measurement. 

4.0 CONCLUSION 

In this document basic tools of least-square minimization problems are presented, as they are used in 
sound source identification inverse techniques. The pseudo-inverse operator is introduced as the exact 
solution of the naïve problem having the minimum norm. Stability problems and the importance of the 
transfer matrix condition number have been discussed. Some regularization methods have been introduced 
such that the least-square Tikhonov regularization. Most famous methods of the regularization parameter 
selection have been briefly presented. Other advance regularization such as sparse regularization have also 
been mentioned.  

The second part of the document is dedicated to application methods. Planar methods are presented: 
acoustic holography, nearfield acoustic holography, statically optimized nearfield acoustic holography. 
Holography in cylindrical and spherical coordinate systems are also presented, as well as holography for 
arbitrary wave functions. In a final part, inverse method based on point source transfer functions are 
introduced, namely the iESM method, the Generalized inverse beamforming and the Bayesian Inference.  

The common basis of all these methods has been emphasized, together with the specific development and 
innovation in each of them. It is hoped that the reader would find in this document a clear grasp of the rich 
domain of inverse techniques applied to sound source localization. Given references are also proposed as 
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valuable and didactical entry points for who is willing to get into more details. 
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